
SANDIA REPORT
SAND2009-6125P
Unlimited Release
Printed September 2009

Stable and Efficient Galerkin Reduced
Order Models (ROMs) with ‘Best Points’
Interpolation for Non-Linear Fluid Flow

Irina Kalashnikova, Sandia National Laboratories and Stanford University

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.



Operated for the U.S. Department of Energy by

Sandia Corporation
Albuquerque, NM 87185-0825

Date:

To:

From:

Subject:

15 September, 2009

Distribution

Irina Kalashnikova1,2

Stable and Efficient Galerkin Reduced Order Models with “Best”
Points Interpolation for Non-Linear Fluid Flow

1Aerosciences Department, Sandia National Laboratories, Albuquerque, NM.
2Institute for Computational & Mathematical Engineering (iCME), Stanford Univer-
sity, Stanford, CA.
E-mail addresses:ikalash@sandia.gov, irinak@stanford.edu (I. Kalashnikova)

Abstract

The aim of this document is to formulate a stable and efficientreduced order model (ROM) for thenonlinear,
compressible three-dimensional (3D) Navier-Stokes equations. The work summarized herein is an extension of ear-
lier work [3, 4, 10, 11, 12], initiated under the Sandia National Laboratories’ Laboratory Directed Research and
Development (LDRD) program to address reduced order modeling for coupled fluid/structure systems. Up to now,
only linearizedfluid equations have been considered. During the months of June - September 2009, the following
contributions to the project goal of extending the ROM to non-linear fluid equations were made by the author:

• Application of the “best” points interpolation procedure [15, 16] to a non-linear Galerkin reduced order model
(ROM) for fluid flow.

• Implementation and testing of the said “best” points interpolation procedure on a model one-dimensional (1D)
convection-diffusion-reaction system of equations for a tubular non-adiabatic reactor [7] in MATLAB, includ-
ing in particular:

– Formulation and implementation of an optimization problemto obtain the so-called “hierarchical” and
“best” interpolation points.

– Implementation of the 1D non-linear tubular reactor ROM with interpolation using Fourier cosine and
Proper Orthogonal Decomposition (POD) bases.

– Generation of some numerical results for the non-linear tubular reactor ROM that illustrate the strengths
and weaknesses of the “best” points interpolation procedure when different orthogonal bases are employed
in the spatial discretization.

• Formulation of a stability-preserving symmetrized ROM forthe compressible (non-linear) 3D Navier-Stokes
equations with appropriate boundary conditions (no-slip and adiabatic wall), including a proof ofab initio
satisfaction of the second law of thermodynamics, or Clausius-Duhem inequality, for all numerical solutions, a
necessary condition for stability.

• Formulation of an efficient interpolation procedure to handle the non-linear terms appearing in the Galerkin-
projected, symmetrized 3D compressible Navier-Stokes equations with boundary conditions.

These theoretical and numerical results are presented in detail herein, and may ultimately be incorporated into a
journal article.
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States Department of Energy’s National Nuclear Security administration, under Contract DE-AC04-94AL85000.
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1 Introduction

In earlier works, namely [3, 4, 10, 11, 12], a Galerkin/Proper Orthogonal Decomposition (POD) Reduced Order
Model (ROM) for the three-dimensional (3D) linearized compressible Euler equations was developed, and an extensive
mathematical analysis of the ROM with boundary treatment was performed. The focus was on crucial numerical
properties of the ROM, namely the well-posedness of the acoustically-reflecting (no-penetration) boundary condition
prescribed at the solid wall boundary, and the stability of the Galerkin projection step in the so-called “symmetry inner
product”. The analysis extended beyond the fluid ROM: stability of the coupled fluid/structure system that arises when
one augments the fluid equations with equations for the displacement of a plate over which the fluid is assumed to
flow was also considered [10]. These in depth studies of stability and well-posedness led naturally to an analysis of
the ROM’s convergence.A priori error estimates for the computed ROM solution relative to the CFD solution and the
exact analytical solution were derived in [11, 12]. To the author’s knowledge, these works were the first to address the
convergence properties of ROMs derived using the continuous projection approach.

Having formulated and analyzed a linear fluid reduced order model, the goal now is to build a ROM for the non-linear
equations of fluid mechanics, namely the 3D compressible Navier-Stokes equations. Several issues must be addressed
in the process of developing a reduced order model for these formidable equations:

• The ROM must be stable.

• The ROM must be efficient.

As for their linearized analogs, stability of the Galerkin projection of the non-linear equations can be ensured by
defining a transformation that essentially symmetrizes these equations. Following appropriate symmetrization, one
can use entropy estimates, namely the Clausius-Duhem entropy inequality, to showab initio satisfaction of the second
law of thermodynamics by all numerical solutions to the ROM.This is a necessary condition for stability, which we
will term “entropy-stability”.

The other issue that must be addressed is efficiency. As discussed in [16] and illustrated herein, for general non-linear
partial differential equations (PDEs), the standard Galerkin projection method is no longer efficient in generating
reduced order models. This is because the integrals involving the non-linear terms can no longer be precomputed, as
in the case for a set of linear equations, but must instead by recomputed at each time or Newton step. The key in
circumventing this difficulty is finding a way to handle the Galerkin projection of the non-linear terms without having
to recomputed these projections (inner products). To do this, we employ the so-called “best” points interpolation
technique [15, 16]. The basic idea is, given a non-polynomial, non-linear functionf (u), to represent it efficiently by
expanding the function itself linearly in an orthonormal basis.

Having given some motivation for our equations and approach, we now give an outline of what is contained herein.
The “best” points interpolation procedure, adapted from [15, 16], is outlined in Section 2 in the context of a one-
dimensional (1D) non-linear convection-diffusion-reaction system of PDEs describing non-adiabatic flow through a
tubular reactor. We give some results for the tubular reactor ROM with interpolation and a Fourier cosine basis (Section
2.5) and discuss some difficulties encountered when attempting to employ a POD basis on this problem (Section 2.6)
In Section 3, we proceed to the 3D compressible Navier-Stokes equations. A change of variables that ensures entropy-
stability of the Galerkin projection of the equationswith appropriate boundary treatment (no-slip and adiabatic wall)
is defined using entropy principles [5, 6, 9] (Section 3.4). Aprocedure to interpolate the non-linear terms that appear
in these projected equations is formulated in Sections 3.5–3.6. Conclusions are offered in Section 4. Section 5 is the
Appendix, which contains expressions and details not included explicitly in the body of this manuscript.
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2 “Best” Points Interpolation Procedure of [15, 16]: Illustration on a 1D
Non-Linear Reduced Order Model of a Tubular Reactor [7]

To demonstrate and better understand the properties of the “best” points interpolation [15, 16] prior to formulating
its application to the full compressible 3D Navier-Stokes equations, we first illustrate the general interpolation pro-
cedure on a simpler one-dimensional (1D) non-linear systemof two coupled equations. Given this discussion, it is
straightforward to extend the interpolation to each of the non-linear terms in the Navier-Stokes equations (Section 3.6).

2.1 Model 1D Nonlinear Convection-Diffusion-Reaction System of Equations

The problem of interest is a model of a non-adiabatic tubularreactor with a singleA→B reaction [7]. In dimensionless
form, the governing equations, describing the conservation of reactantA and energy for the nonadiabatic tubular reactor
with axial mixing, are:

{
∂y
∂τ = 1

Pem

∂ 2y
∂s2 −

∂y
∂s −Dyeγ− γ

θ , s∈ (0,1),τ ∈ (0,∞)
∂θ
∂τ = 1

Peh

∂ 2θ
∂s2 − ∂θ

∂s −β (θ −θ0)+BDyeγ− γ
θ , s∈ (0,1),τ ∈ (0,∞)

(1)

subject to boundary conditions
{

∂y
∂s

∣
∣
s=0 = Pem(y−1)|s=0, τ ∈ (0,∞)

∂θ
∂s

∣
∣
s=0 = Peh(θ −1)|s=0, τ ∈ (0,∞)

(2)

{
∂y
∂s

∣
∣
s=1 = 0, τ ∈ (0,∞)

∂θ
∂s

∣
∣
s=1 = 0, τ ∈ (0,∞)

(3)

and initial condition
y|τ=0 = yin, θ |τ=0 = θin, s∈ (0,1) (4)

Here,y is the dimensionless concentration,θ is the dimensionless temperature,s is the dimensionless axial distance,
τ is the dimensionless time,β is the dimensionless heat transfer coefficient,γ is the dimensionless activation energy,
D is the Damkohler number,B is the dimensionless heat of reaction, andPem andPeh are the Peclet numbers for mass
and heat transfer respectively1. It is convenient to write (1)–(4) in vector form, as follows:

∂u
∂τ = A−1 ∂ 2u

∂s2 − ∂u
∂s −B(u−u0)−C f (u), s∈ (0,1),τ ∈ (0,∞)

∂u
∂s

∣
∣
s=0 = A(u−1)

∣
∣
s=0, τ ∈ (0,∞)

∂u
∂s

∣
∣
s=1 = 0, τ ∈ (0,∞)

u = uin, s∈ (0,1)

(5)

where

u ≡

(
y
θ

)

, u0 ≡

(
y0

θ0

)

(6)

A ≡

(
Pem 0
0 Peh

)

, B ≡

(
0 0
0 β

)

, C ≡

(
D

−BD

)

, 1≡

(
1
1

)

(7)

and
f (u) ≡ yeγ− γ

θ (8)

Classical numerical techniques [7] illustrate periodic solutions which possess Hopf bifurcations. Figure 1 shows the
existence of stable oscillatory solutions as a function of the Damkohler numberD whenPem = Peh = 5, B = 0.50,
γ = 25,β = 2.5 andθ0 = 1. In particular, one can see from this plot that there is a stable orbit bifurcates into a limit
cycle at the lower Hopf point,D = 0.170.

1For more on these parameters, the reader is referred to the “Notation” section of [7].
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Figure 1: Existence of stable oscillatory solutions to (1) whenPeh = Pem = 5, B = 0.50,γ = 25,β = 2.5, θ0 = 1

2.2 Weak Formulation and Reduced Order Approximation of(1)

To formulate a reduced order approximation of the solution of (1), begin by expandingu in an orthonormal vector2

basis{φφφu
m}

M
m=1 ∈ R

2:

u(s,τ) ≈ uM(s,τ) ≡
M

∑
m=1

am(τ)φφφ u
m(s) (9)

whereM is the size of the reduced basis. The basis functionsφφφ u
m are chosen such that they are orthonormal in some

inner product(·, ·) (to be specified given the choice of basis), so that(φφφ i ,φφφ j) = δi j , the Dirac delta function.

To obtain the weak form of the equations (1), we project (5) onto the jth modeφφφ u
j in the(·, ·) inner product, perform an

integration by parts on the diffusion term, and substitute the boundary conditions (2) and (3) into the boundary integral
that arises. Doing so gives:

0 =
(

∂u
∂ τ −A−1 ∂ 2u

∂s2 + ∂u
∂s +B(u−u0)+C f (u),φφφu

j

)

=
(

∂u
∂ τ ,φφφu

j

)

+
(

A−1 ∂u
∂s ,

∂ φφφu
j

∂s

)

−〈A−1 ∂u
∂sn,φφφu

j 〉+
(

∂u
∂s ,φφφu

j

)

+
(

B(u−u0),φφφu
j

)

+
(

C f (u),φφφu
j

)

=
(

∂u
∂ τ ,φφφu

j

)

+
(

A−1 ∂u
∂s ,

∂ φφφu
j

∂s

)

−A−1 ∂u
∂s ·φφφ

u
j

∣
∣
s=1 +A−1 ∂u

∂s ·φφφ
u
j

∣
∣
s=0 +

(
∂u
∂s ,φφφu

j

)

+
(

B(u−u0),φφφu
j

)

+
(

C f (u),φφφu
j

)

=
(

∂u
∂ τ ,φφφu

j

)

+
(

A−1 ∂u
∂s ,

∂ φφφu
j

∂s

)

+A−1A(u−1)
∣
∣
s=0 ·φφφ

u
j +
(

∂u
∂s ,φφφu

j

)

+
(

B(u−u0),φφφu
j

)

+
(

C f (u),φφφu
j

)

=
(

∂u
∂ τ ,φφφu

j

)

+
(

A−1 ∂u
∂s ,

∂ φφφu
j

∂s

)

+(u−1)
∣
∣
s=0 ·φφφ

u
j +
(

∂u
∂s ,φφφu

j

)

+
(

B(u−u0),φφφu
j

)

+
(

C f (u),φφφu
j

)

(10)

Substituting (9) into (10) and invoking orthonormality of the basis functions{φφφu
m}

M
m=1 yields the following system of

ordinary differential equations (ODEs) for the time-dependent ROM coefficientsa j , j = 1, ...,M:

ȧ j = −∑M
m=1amA−1

[
∫ 1

0
∂φφφu

m
∂s ·

∂φφφu
j

∂s ds
]

−∑M
m=1am[φφφ u

m(0)φφφu
j (0)]+1 ·φφφu

j (0)−∑M
m=1am

∫ 1
0

∂φφφu
m

∂s ·φφφu
j ds

−∑M
m=1amB

[
∫ 1

0 φφφ u
m ·φφφ u

j ds
]

+
∫ 1

0 Bu0 ·φφφ u
j ds−

∫ 1
0 C f (uM) ·φφφ u

j ds
(11)

Here,ȧ j ≡
daj
dτ .

The last term in (11) contains the functionf (uM), which is non-linear inuM. In vector form, (11) can be written as:

ȧM = F−LaM −N(aM) (12)

where
aT

M ≡
(

a1 · · · aM
)

(13)

2Alternatively, one may expand eachy andθ in their own scalar, orthonormal bases. This is in fact what is done in Section 2.5, namely (46) and
(47). The result is a ROM ODE system involving a total of 2M ROM coefficients.
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Fi = 1 ·φφφu
i (0)+

∫ 1

0
Bu0 ·φφφ u

i ds (14)

Li j = φφφu
j (0)φφφu

i (0)+

∫ 1

0

[

A−1 ∂φφφu
i

∂s
·

∂φφφu
j

∂s
+

∂φφφu
j

∂s
·φφφu

i +Bφφφu
j ·φφφ

u
i

]

ds (15)

Ni(aM) =
∫ 1

0
C f

(
M

∑
m=1

amφφφ u
m

)

·φφφu
i ds (16)

for i, j = 1, ...,M. In the simpler case whenPeh = Pem = Pe, (14) and (15) simplify to:

Fi = [φu
i (0)]1 +[φu

i (0)]2 +
∫ 1

0
β θ0[φu

i ]2ds (17)

Li j = [φu
i (0)]1[φu

j (0)]2 +[φu
i (0)]2[φu

j (0)]2

+
∫ 1

0

{

1
Pe

[

∂ [φu
i ]1

∂s

∂ [φu
j ]

1

∂s +
∂ [φu

i ]2

∂s

∂ [φu
j ]

2

∂s

]

+

[
∂ [φu

j ]
1

∂s [φu
i ]1 +

∂ [φu
j ]

2

∂s [φu
i ]2
]

+ β [φu
j ]

2[φu
i ]2
}

ds
(18)

where[φu
i ]k denotes thekth component ofφφφu

i , for k = 1,2. For clarification of the notation in (16), for the functionf
in (8):

f

(
M

∑
m=1

amφφφu
m

)

≡ f

(
M

∑
m=1

ay
m[φu

m]1,
M

∑
m=1

aθ
m[φu

m]2

)

=

(
M

∑
m=1

ay
m[φu

m]1

)

exp



γ − γ

(
M

∑
m=1

aθ
m[φu

m]2

)−1


 (19)

Since the vector stemming from the non-linear functionf (u) (8) depends onaM, the inner products in (16)cannotbe
pre-computed prior to time-integration of the ROM system (12), as could (and would) be done in the case of linear
equations. This greatly reduces the efficiency of this ROM, and motivates one to consider some alternative way to
handle the nonlinearity in (16), so that inner products involving f (uM) need not be recomputed at each time step.

2.3 Solution for the Interpolation Points: “Best” Points vs. Hierarchical Points

In order to recover efficiency, let us develop the coefficientfunction approximation for the non-linear terms in (1) by
employing the “best” points interpolation of [15, 16]. We outline the general procedure below.

SupposeK snapshots have been taken of the (vector-valued) primal unknown field, atK different times:

S
u ≡ {ξξξ u

k(s) = uk
h(s) : 1≤ k≤ K} (20)

Here, theuk
h(s) are vectors of state variables at grid point locations, eachcontaining a single solution (snapshot) from

the numerical simulation.

Given this set of snapshots of the primal unknown fieldu, one can construct the following set of snapshots of the
non-linear (scalar-valued) functionf defined in (8):

S
f ≡ {ξ f

k (s) = f (uk
h(s)) : 1≤ k≤ K} (21)

We now define the best approximations of the elements in the snapshot set as:

f ∗M(uk
h(·)) = arg min

wM∈span{φ f
1 ,...,φ f

M}

|| f (uk
h(·))−wM||, 1≤ k≤ K (22)

where{φ f
m}

M
m=1 is an orthonormal (in this case, scalar) basis forf . Orthonormality of theφ f

m implies that

f ∗M(uk
h(x)) =

M

∑
m=1

αk
mφ f

m(s), 1≤ k≤ K (23)
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where
αk

m = (φ f
m, f (uk

h(·))), m= 1, ...,M,1≤ k≤ K (24)

The “best” interpolation points [15, 16]{sbp
m }M

m=1 are defined as the solution to the following optimization problem:

min
sbp
1 ,...,sbp

M ∈Ω ∑K
k=1

∣
∣
∣

∣
∣
∣ f ∗M(uk

h(·))−∑M
m=1 β k

m(sbp
1 , ...,sbp

M )φ f
m

∣
∣
∣

∣
∣
∣

2

∑M
n=1φ f

n (sbp
m )β k

n(sbp
1 , ...,sbp

M ) = f (uk
h(s

bp
m )), 1≤ m≤ M,1≤ k≤ K

(25)

Substituting (23) into (25) and invoking the orthonormality of the{φ f
m}M

m=1, we obtain:

min
sbp
1 ,...,sbp

M ∈Ω ∑K
k=1 ∑M

m=1(αk
m−β k

m(sbp
1 , ...,sbp

M ))2

∑M
n=1φ f

n (sbp
m )β k

n(sbp
1 , ...,sbp

M ) = f (uk
h(s

bp
m )), 1≤ m≤ M,1≤ k≤ K

(26)

i.e., the set of points{sbp
m }M

m=1 is determined to minimize the average error between the interpolantsfM(·) and the best
approximationsf ∗M(·). For implementational purposes, it is useful to rewrite (26) as

min
sbp
1 ,...,sbp

M ∈Ω ∑Q
q=1(α̃q− β̃q(s

bp
1 , ...,sbp

M ))2

∑M
n=1φ f

n (sbp
m )β̃(k−1)M+m(sbp

1 , ...,sbp
M ) = f (uk

h(s
bp
m )), 1≤ m≤ M,1≤ k≤ K

(27)

whereQ = MK and, for 1≤ m≤ M, 1≤ k≤ K,

αk
m = α̃(k−1)M+m

β k
m = β̃(k−1)M+m

(28)

The solution to the least-square optimization problem (27)can be found using the Levenberg-Marquardt (LM) algo-
rithm3. According to [16], the optimal solution is typically reached in less than fifteen iterations of the LM algorithm.

As noted in [15], the solutions to (27) are in general non-unique, as the objective function defining the “best” points is
usually non-convex. As a consequence, any iterative minimization algorithm used to solve (27) is very sensitive to the
initial guess.

One systematic approach that works well for selecting the initial guess for (27) is to first compute the so-called
“hierarchical” interpolation points4, {shp

m }M
m=1 and then use these as the initial guess in finding the “best” points. The

hierarchical points are less expensive to construct than the “best” points{sbp
m }M

m=1, as they are computed one at a time

by solving a sequence of univariate optimization problems.They also exhibit the nice property that{shp
1 , ...,shp

m } ⊂

{shp
1 , ...,shp

m+1} for m= 1, ...,M−1.

The solution procedure for the hierarchical points is as follows. To obtain the first hierarchical point,shp
1 one computes

the minimizer of the following (univariate, or 1D) optimization problem:

min
shp
1 ∈Ω ∑K

k=1(αk
1 −β k

1(shp
1 ))2

φ f
1 (shp

1 )β k
1(shp

1 ) = f (uk
h(s

hp
1 )), 1≤ k≤ K

(29)

Then, forL = 2, ...,M, one findsshp
L and appends it to the sequence{shp

1 , ...,shp
L−1} already computed, whereshp

L is
defined as the minimizer of

min
shp
L ∈Ω ∑K

k=1 ∑L
l=1(αk

l −β k
l (shp

L ))2

∑L
l=1 φ f

l (shp
m )β k

l (shp
m ) = f (uk

h(s
hp
m )), 1≤ m≤ L−1,1≤ k≤ K

∑L
l=1 φ f

l (shp
L )β k

l (shp
L ) = f (uk

h(s
hp
L )), 1≤ k≤ K

(30)

3E.g., by employing thelsqnonlin function in MATLAB’s optimization toolbox.
4For more on the hierarchical points, the reader is referred to Section 2.2.3 of [15].
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whereL = 2, ...,M andαk
l is as defined in (24).

As will be illustrated in Section 2.5, the objective functions in (30) are, like the objective function in (27), in general
non-convex, meaning they possess multiple local minima. However, as each minimization (30) is univariate, one
could, rather than using an iterative optimization procedure to obtain local minima, compute the global minimizers
that solve (30). This idea is explored further in Section 2.5.

2.4 Reduced Order Approximation to (1) with Interpolation

Given the “best” points forf , i.e., the solutions to (27) (or any set of interpolation points), call them{sf
m}

M
m=1, it is

straight forward to apply the interpolation outlined in Section 2.3 to the non-linear functionf (u) (8). We begin by
computing snapshots for the non-linear functionf in (8). From these snapshots we compute the interpolation points
{sf

m}
M
m=1 following the approach outlined in Section 2.3 (see also Section 2 of [16]). Given{sf

m}
M
m=1 and{φ f

m}
M
m=1,

one obtains the so-called “cardinal functions”{ψ f
m}

M
m=1 by solving the following linear system

φφφ f
M(s) = Aψψψ f

M(s) (31)

whereφφφ f
M(s) = (φ f

1 (s), ...,φ f
M(s))T andψψψ f

M(s) = (ψ f
1 (s), ...,ψ f

M(s))T , andAi j = φ f
j (zi). Note that (31) is well-defined,

as the basis forf , like f itself, isscalar. Note also that the cardinal functions satisfyψ j(zi) = δi j .

Given the interpolation points{sf
m} and the cardinal functions{ψ f

m}, one can approximatef as:

f (u) ≈ fM(u) =
M

∑
m=1

f (u(sf
m))ψ f

m ∈ R (32)

so that

fM =
M

∑
m=1

f

(
M

∑
n=1

an(t)φφφ u
n(s

f
m)

)

ψ f
m (33)

The projection offM onto thel th POD mode foru can be written in matrix/vector form. To do this, note that, for a
general functionfM(aM) and forl = 1, ...,M, we have that:

(φφφ u
l ,C fM(aN)) =

(

φφφ u
l ,∑M

m=1 C f
(

∑M
n=1anφφφu

n(s
f
m)
)

ψ f
m

)

= ∑M
m=1

[
∫

Ω φφφ u
l ·Cψ f

mdΩ
]

f
(

∑M
n=1anφφφ u

n(s
f
m)
) (34)

Remark that (34) is a matrix/vector product of the formG f
(

∑M
n=1anφφφ u

n(s
f
m)
)

where

Gnm =
∫

Ω
φφφu

n ·Cψ f
mdΩ (35)

for 1≤ m,n≤ M (so thatG ∈ R
M×M).

It follows that, with the interpolation procedure employedhere, our ODE system for the ROM coefficients is not (12)
but rather

ȧM = F−LaM −G f (D f aM) (36)

whereF andL are defined in (14) and (15) respectively, the entries ofG are given by (35), and

D f ≡






φφφ u
1(s

f
1) . . . φφφu

M(sf
1)

...
. . .

...
φφφ u

1(s
f
M) . . . φφφu

M(sf
M)




 ∈ R

2M×M (37)
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To clarify the notation in (36), namely what is meant by a function f of a vector:

f (D f aM) ≡ f






∑M
m=1 φφφ u

m(sf
1)am

...

∑M
m=1 φφφ u

m(sf
M)am




≡








f
(

∑M
m=1 φφφ u

m(sf
1)am

)

...

f
(

∑M
m=1 φφφu

m(sf
M)am

)








∈ R
M (38)

where f
(

∑M
m=1 φφφ u

m(sf
i )am

)

is defined as in (19).

Essentially, in the interpolation procedure outlined here, recomputation of inner products (projection) of the nonlinear
terms at each time (or Newton) step is replaced by evaluationof the basis functions at the (pre-computed) interpolation
points (37). There is also a matrix inversion (31) involved in solving for the cardinal functions{ψ f

m}M
m=1 (31). This is

the key difference between the ROM with interpolation (36) and the ROM without interpolation (12), and what makes
(36) far more efficient. The formulation and solution of the ROM with interpolation, including computation of the
“best” points and time-integration, is summarized in Algorithm 1 below.

Algorithm 1 Summary of ROM solution procedure of (1) with “best” points interpolation
1. Compute a set ofK snapshots for the primal unknown fieldu:

S
u ≡ {ξξξ u

k(s) = uk
h(s) : 1≤ k≤ K} (39)

2. Given this set of snapshots of the primal unknown fieldu, compute the following set of snapshots of the non-linear
function f (8) from (39):

S
f ≡ {ξ f

k (s) = f (uk
h(x)) : 1≤ k≤ K} (40)

3. Compute an orthonormal basis{φ f
1 , ...,φ f

M} for f .
4. For the nonlinear functionf (u) in (8), apply (for instance) the Levenberg-Marquandt (LM) algorithm to solve
(27) for the “best” pointssbp = {sbp

1 , ...,sbp
M }.

5. Compute an orthonormal basis{φu
1 , ...,φu

M} for u.
6. Compute the matrixL and vectorF from (15) and (16) respectively.
7. ComputeA ≡ A(sbp) at the best points, with:

Amn = φ f
n (sf

m) (41)

8. Compute the set of cardinal functions{ψ f
1 , ...,ψ f

M} by solvingφφφ f
M = Aψψψ f

M.
9. ComputeG from

Gnm =

∫

Ω
φφφ u

n ·Cψ f
mdΩ (42)

10. ComputeD f from
D f

mn = φu
n (zf

m) (43)

11. Advance the following ODE system forward in time using a standard time-integration scheme (e.g., Euler,
Runge-Kutta, etc.).

ȧN +LaN−F+G f (D f aN) = 0 (44)

(Note that Newton’s method is not required if an explicit scheme is employed.)

2.5 Some Numerical Results for(8) with a Fourier Cosine Reduced Basis

Since we are interested in formulating aGalerkin Reduced Order Model (ROM), we seek a basis that satisfies the
boundary conditions, namely (2) and (3). It turns out that a Fourier cosine basis, defined by

φm(s) = cos(π(m−1)s), m= 1, ...,M (45)
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for 0≤ s≤ 1 satisfies these boundary conditions. To generate some preliminary numerical results, we will therefore
employ a scalar Fourier cosine basis for eachy andθ :

y(τ,s) ≈ yM(τ,s) =
M

∑
m=1

ay
m(τ)cos(π(m−1)s) (46)

θ (τ,s) ≈ θM(τ,s) =
M

∑
m=1

aθ
m(τ)cos(π(m−1)s) (47)

It is well-known that the Fourier cosine basis is orthonormal in the L2 inner product; hence, we will take as(·, ·) the
L2([0,1]) inner product. It follows that the coefficients in (46) and (47) are given by

ay
m(τ) = (y(τ,s),cos(π(m−1)s)L2([0,1]) ≡

∫ 1

0
y(τ,s)cos(π(m−1)s)ds (48)

and

aθ
m(τ) = (θ (τ,s),cos(π(m−1)s)L2([0,1]) ≡

∫ 1

0
θ (τ,s)cos(π(m−1)s)ds (49)

respectively.

For concreteness and to generate some numerical results, wefix the properties in the equations (1) to those summarized
in Table 1. As one can infer from Figure 1, the solution exhibits a limit cycle forD = 0.170. One of our goals is to see

Table 1: Fluid properties used in the numerical solution of (1)
Property Symbol Value

Peclet number for heat transfer Peh 5.00
Peclet number for mass transfer Pem 5.00
Dimensionless heat of reaction B 0.50

Dimensionless activation energy γ 25.0
Dimensionless heat transfer coefficient β 2.50
Reference dimensionless temperature θ0 1.00

Damkohler number D 0.17

if the ROM solution with interpolation captures this limit cycle correctly.

The reduced order model for which we give numerical results was generated by takingK = 701 snapshots of the
solution fieldsy andθ , at time incrementsdτ = 0.25 apart. Numerical tests reveal that, to capture the correct limit
cycle, a reduced basis Fourier cosine basis of size at leastM = 6 modes is required. Below, we give some results for
M = 6 andM = 10.

Tables 2 and 3 give the uniform, hierarchical and “best” points for a basis of sizeM = 6 andM = 10 respectively,
and the nonlinear function (8). The “best” points are computed by solving the optimization problem (27) using the
lsqnonlin function in MATLAB’s optimization toolbox, and with the hierarchical points as the initial guess. We
note that the objective function in (27) is not necessarily convex, so it may possess multiple local minima, which
implies that the “best” points are non-unique. The same is true for the objective function that defines the hierarchical
points. Since in this latter case of the hierarchical points, the minimization is univariate, it is possible to obtain hierar-
chical points that are global minima of the relevant objective function (third column of Tables 2 and 3). These points
can be quite different, as one can see by comparing columns two and three of Tables 2 and 3. Indeed, the following
figure (Figure 2) shows that the objective function defining the second and third hierarchical points (and subsequent
hierarchical points) possesses multiple local minima. An interesting, perhaps somewhat surprising, observation is that
it turns out not to matter which hierarchical points, the local minimizers (column two of Tables 2 and 3) or the global
minimizers (column three of Tables 2 and 3) are used as the initial guess to obtain the “best” points in column four of
these tables. Selectingsuni f (the uniform points) as the initial guess produces in general a different set of “best” points,
however.
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The ROM ODE system resulting from the discretization (36) was advanced forward in time using a nonlinear fourth
order Runge-Kutta (RK-4) time integration scheme, with time step∆τ = 10−3.

Figures 3 and 5 show theL2([0,1]) errors in the ROM solutions computed usingM = 6 andM = 10 Fourier cosine
modes respectively with the interpolation outlined in Section 2.3. Errors are computed relative to the snapshots for
uniformly spaced interpolation points versus the “best” points. It is found that using the “best” points reduces the error
by an order of magnitude in general. One can also see by comparing Figures 3 and 5 that there is greater payoff in
using the “best” points for smallerM.

Figures 4 and 6 depict the limit cycle computed by the 6 and 10 mode ROMs (respectively) with “best” points interpo-
lation. There is a slight phase error whenM = 6 because so few modes are employed; nonetheless, it is clearthat the
nonlinear behavior, namely the limit cycle, is captured. There is excellent agreement between the ROM limit cycle and
the snapshot limit cycle forM = 10 (Figure 6): the non-linear behavior is captured with the correct phase/magnitude.

Table 2: Uniform (suni f ), hierarchical (shp) and “best” (sbp) points forM = 6
suni f shp (local minimizer) shp (global minimizer) sbp

0.0000 0.0291 0.2000 0.0572
0.2000 0.1202 0.2500 0.2465
0.4000 0.2211 0.4400 0.4203
0.6000 0.3252 0.7200 0.5909
0.8000 0.4311 0.7700 0.7578
1.0000 0.5378 0.7800 0.9211

Table 3: Uniform (suni f ), hierarchical (shp) and “best” (sbp) points forM = 10
suni f shp (local minimizer) shp (global minimizer) sbp

0.0000 0.0945 0.0072 0.0291
0.1111 0.1021 0.0400 0.1202
0.2222 0.2568 0.2000 0.2211
0.3333 0.3355 0.2500 0.3252
0.4444 0.4407 0.4200 0.4311
0.5556 0.5490 0.4400 0.5378
0.6667 0.6659 0.5000 0.6443
0.7778 0.7014 0.7700 0.7504
0.8889 0.8529 0.7800 0.8560
1.0000 0.9157 0.8700 0.9564
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Figure 3: Time history ofL2([0,1]) relative errors in 6 mode ROM solution with interpolation using uniform points
vs. “best” points
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Figure 4: Correct computation of limit cycles by a 6 mode ROM with “best” points interpolation

2.6 Other Orthogonal Bases: Some Difficulties with a Proper Orthogonal Decomposition
(POD) Basis for the Tubular Reactor ROM

We end the discussion of the 1D non-linear tubular rector ROMwith some comments regarding the performance of the
ROM with a Proper Orthogonal Decomposition (POD) basis, instead of a spectral basis like the Fourier cosine basis
(45). Let us first give a brief overview of POD.

Discussed in detail in Lumley [14] and Holmeset. al. [8], POD is a mathematical procedure that, given an ensembleof
data, constructs a basis for that ensemble that is optimal ina well-defined sense. A POD basis of orderM << N is a set
of functions{φφφ i : i = 1,2, . . . ,M} that is the “best” linear basis for describing the original ensemble. Mathematically,
POD seeks anM-dimensional (M << N) subspace spanned by the set{φφφ i} such that the projection of the difference
between the ensemble of snapshots (realizations) of the flowfield uk and its projection onto the subspace is minimized
on average. It is a well-known result [8, 12] that the solution to this minimization problem reduces to the eigenvalue
problem

Rφφφ = λ φφφ (50)
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Figure 5: Time history ofL2([0,1]) relative errors in 10 mode ROM solution with interpolation using uniform points
vs. “best” points
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Figure 6: Correct computation of limit cycles by a 10 mode ROMwith “best” points interpolation

where
Rφφφ = 〈uk(uk,φφφ )〉 (51)

and〈·〉 denotes a time-averaging operator. The operatorR is self-adjoint and non-negative definite. If one further
assumes thatR is compact, then there exists a countable set of non-negative eigenvaluesλi with associated eigenfunc-
tionsφφφ i , orthonormal in the relevant inner product. In building a ROM, one is interested in truncating the POD basis
and retaining only theM << N most energetic modes. It can be shown [8, 14] that the set ofM eigenfunctions, or POD
modes,{φφφ i : i = 1,2, . . . ,M} is optimal in the sense that it describes more energy (on average) of the ensemble than
any other linear basis of the same dimensionM. The compression of the ensemble energy into a minimum number of
modes is what makes the POD basis attractive for reduced order modeling. We note the POD basis{φφφ i : i = 1,2, . . . ,M}

just described isnot complete. It is, however, complete in an average sense, thatis
〈∣
∣
∣

∣
∣
∣uk−∑ j(u

k,φφφ j)φφφ j

∣
∣
∣

∣
∣
∣

〉

= 0 for

M = N.

Numerical experiments with a POD basis suggest that POD is a poor choice of ROM basis for this problem. In
particular, it is observed that:
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• The method of snapshots appears to break down when computingbases ofM greater than approximately 30 for
theK = 700 snapshots of the fieldu. Non-orthogonal modes begin to appear.

• The Fourier basis seems to be much more efficient at representing the nonlinear functionf (u) (8) than the POD
basis.

The second point is likely the primary cause of the trouble. Indeed, POD is optimal in representingu but not necessarily
f (u) so its inadequacy is not entirely surprising. The excellentresults with a Fourier basis can likely be attributed to
the smoothness of this basis, as well as the fact that the exact derivatives of the basis functions are available.

We emphasize that the inadequacy of POD for the tubular reactor problem (1), revealed by the numerical implemen-
tation and testing of the Galerkin POD ROM, is not a setback for the non-linear reduced order modeling approach
discussed here, as our focus is on the interpolation method,not the specific basis used in the discretization.

3 An Entropy-Stable and Efficient Reduced Order Model (ROM) for the 3D
Compressible Navier-Stokes Equations

Having formulated the “best” points interpolation of [15, 16] in the context of a non-linear Galerkin reduced order
model, and demonstrated its application to a simple 1D non-linear convection-diffusion-reaction system (Section 2),
let us now turn our attention to the equations of interest, namely the three-dimensional (3D) compressible Navier-
Stokes equations. Following a discussion of the fluid variables, the governing equations and the boundary conditions
(Section 3.1), we exhibit an entropy-stable inner product for the Galerkin projection step (Sections 3.2–3.4), and
formulate the “best” points interpolation procedure outlined in Section 2.3 as it would be used to handle the non-linear
terms present in these equations (Sections 3.5–3.6).

3.1 Notation and Governing Equations

In terms of the so-called conservation variablesU, the Navier-Stokes equations can be written as5 (neglecting forces)
[9]:

U,t +Fi,i = Fv
i,i +Fh

i,i (52)

where, in three-dimensions (3D):

U ≡









U1

U2

U3

U4

U5









≡









ρ
ρu1

ρu2

ρu3

ρe









(53)

Fi = uiU+ p









0
δ1i

δ2i

δ3i

ui









, Fv
i =









0
τ1i

τ2i

τ3i

τi j u j









, Fh
i =









0
0
0
0

−qi









(54)

for i = 1,2,3. Fi is known as the convective or Euler flux,Fv
i is the viscous flux, andFh

i is the heat flux. The variables
and parameters appearing in (53)–(54) are defined in Table 4.The specific heats are assumed to be positive constants.
Moreover, we require that

µ ≥ 0, λ +
2
3

µ ≥ 0, κ ≥ 0 (55)

(52) is the conservative form of the 3D compressible Navier-Stokes equations. These equations can also be written in
non-conservative form as

U,t +A iU,i = (K i j U, j),i (56)

5Note that we are employing the so-called Einstein notation,or implied summation on repeated indices, so that, e.g.,Fi,i ≡
∂F1
∂x1

+ ∂F2
∂x2

+ ∂F3
∂x3

.
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Table 4: Fluid variables
Variable Physical Meaning Expression

ρ fluid density
ui fluid velocity in theith direction
δi j Kronecker delta δi j = 1 if i = j, δi j = 0 otherwise
e total energy density e= ı+ 1

2u2

ı internal energy density ı = cvθ
θ absolute temperature
cv specific heat at constant volume
cp specific heat at constant pressure
γ ratio of specific heats γ = cp/cv

p fluid pressure p = (γ −1)ρ ı
τi j viscous stress τi j = λuk,kδi j + µ(ui, j +u j ,i)

λ , µ viscosity coefficients
qi heat flux qi = −κθ,i

κ conductivity
η thermodynamic entropy density per unit mass
s nondimensional entropy s≡ η/cv = ln(pρ−γ)+const [Gibbs’ equation]
t time
x position vector in Cartesian coordinates xT = (x1,x2,x3)

whereA i ≡ A i(U), K v
i j ≡ K v

i j (U) andKh
i j ≡ Kh

i j (U) are defined by

Fi,i = Fi,UU,i ≡ A iU,i (57)

Fv
i ≡ K v

i j U, j (58)

Fh
i ≡ Kh

i j U, j (59)

and
K i j ≡ K v

i j +Kh
i j (60)

Let us for now neglect the far-field boundary conditions, so that we consider only the solid wall boundary conditions,
denoting the solid wall boundary of the domainΩ by ∂ΩW ≡ ∂Ω. The relevant boundary conditions at the solid wall
are:

no slip BC: u = 0, on ∂ΩW

adiabatic wall BC: ∇θ ·n = 0, on ∂ΩW
(61)

This document (Section 3.4) also includes a discussion of the no-penetration boundary condition:

no-penetration BC: u ·n = 0, on∂ΩW (62)

which it may be desirable to implement, for instance, if the basis functions employed do not satisfy the no-slip condi-
tion at the wall.

3.2 Clausius-Duhem Inequality, Entropy Variables and Symmetrization of the Navier-Stokes
Equations

In designing a Galerkin Reduced Order Model (ROM) for the compressible Navier Stokes equations (52), we are
interested in defining an inner product in which the Galerkinprojection will be stable. As discussed in [5, 9], stability
can be ensured by the energy method.
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3.2.1 Clausius-Duhem Inequality

For the full (non-linear) Euler or Navier-Stokes equations, the energy method is closely tied to the second law of
thermodynamics, or the Clausius-Duhem inequality, namely

d
dt

∫

Ω
ρηdΩ ≥−

∫

∂ΩW

qini

θ
dS (63)

whereη is the thermodynamic entropy density per unit mass (Table 4). (63) essentially states that the entropy of the
system is non-decreasing. For (52), energy estimates, or the satisfaction of the entropy inequality (63), imply that the
semi-discrete solutions possess stability properties akin to those of the exact solutions of the governing equations [5, 9].
We will call solutions that satisfy (63) “entropy-stable”.Our aim here is to develop a transformation (symmetrization)
and define an inner product such that the Clausius-Duhem inequality (63) is necessarily satisfied for the Galerkin ROM
we will build for the compressible Navier-Stokes equations(52) with boundary conditions (61).

3.2.2 Entropy Variables

To develop a Clausius-Duhem inequality-preserving Galerkin projection of the equations (56), let us introduce a
change of variablesU → V:

U = U(V) (64)

We will refer toV as the “entropy variables”. In terms of the entropy variablesV, the equations of interest (56) are:

A0V,t + Ã iV,i − (K̃ i j V, j),i = 0 (65)

where6

A0 ≡ U,V (66)

Ã i ≡ A iA0 (67)

K̃ i j ≡ K i j A0 (68)

It is well-known that the matricesA i in (56) are non-symmetric. However, it is also well-known that all linear com-
binations of theA i possess real eigenvalues and a complete set of eigenvectors, meaningU,t +A iU,i = 0 constitutes a
hyperbolic system of conservation laws. We seek a change of variables (64) such that:

1. The matricesA0 andÃ i are symmetric, and

2. The matrix

K̃ ≡





K̃11 K̃12 K̃13

K̃21 K̃22 K̃23

K̃31 K̃32 K̃33



 (69)

is symmetric positive semi-definite.

If the transformation (64) is defined such that these properties hold, the resulting system in the entropy variables will
be a symmetric hyperbolic system.

3.2.3 Generalized Entropy Functions and Entropy Fluxes

Following the symmetrization approaches of [5, 9], we will define the change of variables (64) with the help of so-
called generalized entropy functions. A generalized entropy functionH ≡H(U) is by definition a function that satisfies
the following two conditions [9]:

1. H is convex7.
6The reader is referred to Section 5.1 of the Appendix for explicit expressions of the symmetrized matrices (66)–(68).
7The convexity ofH is equivalent to the positive-definiteness ofA0, sinceA−1

0 = V,U = H,UU.
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2. There exist scalar-valued functionσi ≡ σi(U), i = 1,2,3, referred to as entropy fluxes, such that

H,UA i = σi,U (70)

The following theorems, quoted from [6], delineate the relationship between symmetric hyperbolic systems and gen-
eralized entropy functions, and will be employed in our symmetrization of the equations (57):

Theorem 3.2.1 (Mock).A hyperbolic system of conservation laws possessing a generalized entropy function becomes
symmetric under the change of variables

VT = H,U (71)

Theorem 3.2.2 (Godunov).If a hyperbolic system can be symmetrized by introducing a change of variables, then a
generalized entropy function and corresponding entropy fluxes exist for this system.

3.2.4 Entropy Flux for the Compressible Navier-Stokes Equations (52)

It is shown in [6, 9] that for the compressible Navier-Stokesequations (56), appropriate choices for the entropy flux
and entropy function are

σi = Hui , H = −ρg(s) ≡−ρs (72)

respectively. Heres is the non-dimensional entropy,s= η/cv (Table 4), which satisfies the well-known Gibbs equation
s= ln(pρ−γ)+const.

With the choice of affine entropy flux (72), the transformation U → V (71) is given by

V =
1
ρ ı









−U5+ ρ ı(γ +1−s)
U2

U3

U4

−U1









(73)

where

s= ln

[
(γ −1)ρ ı

U γ
1

]

(74)

ρ ı = U5−
1

2U1
(U2

2 +U2
3 +U2

4 ) (75)

The inverse mappingV → U is given by

U = ρ ı









−V5

V2

V3

V4

1− 1
2V5

(V2
2 +V2

3 +V2
4 )









(76)

where

ρ ı =

[
γ −1

(−V5)γ

]1/(γ−1)

exp

(
−s

γ −1

)

(77)

s= γ −V1+
1

2V5
(V2

2 +V2
3 +V2

4 ) (78)
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3.2.5 Homogeneous vs. Inhomogeneous Entropy Fluxes

We conclude the discussion by calling attention to the fact that the affine entropy flux (72) isnot homogeneous. To be
called a homogeneous flux function [5],H must be selected such that:

U,VV = βU (79)

F̃i,VV = β F̃i (80)

for someβ ∈ R, whereF̃i ≡ Fi(V(U)) (the Euler fluxes in the transformed entropy variables). As shown in [6], the
viscousterms in the Navier-Stokes equations will be symmetric and positive definite after symmetrization for any
memberH = −ρg(s) of Harten’s generalized entropy functions, in particular the following family of exponential
homogeneousflux functions:

h(s) = Keκs = K(pρ−γ), K,κ 6= 0 (81)

However, as proven in Section 5.5 of the Appendix, if the heatflux term Fh
i,i is present in the equations (52), the

only way for the augmented heat flux matrix (69) to remain positive semi-definite is ifH is affine in s, i.e., if H
has the form (72). It is for this reason that we have selected the inhomogeneousentropy flux function (72) for the
compressible Navier-Stokes equations (52) instead of thehomogeneousflux function (81). The latter could be used
for the Euler equations or the Navier-Stokes equations withFh

i,i . In our case, sinceFh
i,i 6= 0, we select (72) to obtain the

entropy-stability result in Theorem 3.3.1.

3.3 Entropy Stable Galerkin Projection of the Symmetrized Compressible Navier-Stokes
Equations (65)with Boundary Conditions (61)

Let us now examine the stability of the Galerkin projection in theL2(Ω) inner product of the symmetrized compressible
Navier-Stokes equations (65) with boundary conditions (61). We will say that the Galerkin projection is “entropy-
stable” if it satisfies the Clausius-Duhem entropy inequality (63), or the second law of thermodynamics. Per the
discussion in [5, 9], we aim to show that the change of variables (73) is such that when the transformed equations (65)
are projected onto a POD mode, the Clausius-Duhem inequality is respectedab initio for all numerical solutions.

Assume the entropy variables have been expanded in a vector basis{φφφ i}
M
i=1 ∈ R

5:

V(x, t) ≈ VM(x,t) =
M

∑
m=1

am(t)φφφ m(x) (82)

where theam(t) are the modal amplitudes (or ROM coefficients) to be solved for. Assume the basis is orthonormal in
theL2(Ω) inner product, so that(φφφ i ,φφφ j) = δi j for all i, j = 1, ...,M.

Theorem 3.3.1.Consider the symmetrized compressible 3D Navier-Stokes equations(65) in an open bounded domain
Ω⊂R

3, with the no-slip and adiabatic wall boundary condition(61)on the boundary∂ΩW. Define the transformation
U → V given by the entropy flux(72), so that the relationship betweenU and the entropy variablesV is (73). Then
the Galerkin projection onto a POD modeφφφ j of (65) with boundary conditions(61) in the L2(Ω) inner product is
“entropy stable” (i.e.., satisfies the entropy estimate(63)) if the POD modesφφφ j satisfy the no-slip condition on∂ΩW,
i.e., if

φ2
j = φ3

j = φ4
j = 0 (83)

for j = 1, ...,M whereφ i
j denotes the ith component ofφφφ j for i = 1, ...,5.

Proof. Let us work out the projection of each of the terms at (65), oneat a time. Premultiplying (65) byVT and
integrating overΩ, we have:

∫

Ω VTA0V,tdΩ =
∫

Ω H,UU,VV,tdΩ
=
∫

Ω H,UU,tdΩ
=
∫

Ω H,tdΩ
(84)
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Note that
VT Ã i = (H,UA i)A0 = σi,UU,V = σi,V (85)

Now, for the convection term:

∫

Ω
VT Ã i

∂V
∂xi

dΩ =

∫

Ω
σi,V

∂V
∂xi

︸ ︷︷ ︸

σi,i

dΩ =

∫

Ω
(Hui),idΩ (86)

Moving on to the diffusion term:

∫

Ω VT(K̃ i j V, j),idΩ = −
∫

Ω VT
,i K̃ i j V, jdΩ +

∫

Ω(VT K̃ i j V, j),idΩ
= −

∫

Ω VT
,i K̃ i j V, jdΩ +

∫

∂ΩW
VT K̃ i j V, jdS

= −
∫

Ω VT
,i K̃ i j V, jdΩ +

∫

∂ΩW
VTK i j niA0V, jdS

= −
∫

Ω VT
,i K̃ i j V, jdΩ +

∫

∂ΩW
VT(K v

i j +Kh
i j )niU,VV, jdS

= −
∫

Ω VT
,i K̃ i j V, jdΩ +

∫

∂ΩW
VT(K v

i j +Kh
i j )niU, jdS

= −
∫

Ω VT
,i K̃ i j V, jdΩ +

∫

∂ΩW
VT(Fv

i +Fh
i )nidS

= −
∫

Ω VT
,i K̃ i j V, jdΩ +

∫

∂ΩW
VTFv

i nidS+ 1
cv

∫

∂ΩW

qi ni
θ dS

(87)

The integrand in the first boundary integral in (87) becomes,after the application of the no-slip condition (see (172))

[Fv
i ni ]

ns =
µ

V2
5









0
(−V5Vi+1,1+Vi+1V5,1−V5V2,i +V2V5,i)ni

(−V5Vi+1,2+Vi+1V5,2−V5V3,i +V3V5,i)ni

(−V5Vi+1,3+Vi+1V5,3−V5V4,i +V4V5,i)ni

0









+ λ
[
−V5Vi+1,i +Vi+1V5,i

V2
5

]









0
n1

n2

n3

0









(88)

Let φφφ j ∈ R
5 be a POD mode for the primal unknown field in the entropy variables,V, and assume thatφφφ j satisfies the

no-slip condition (e.g., assumeφ2
j ,φ3

j ,φ4
j on ∂ΩW is zero-ed outa posterioriin the implementation to ensure that it

satisfies no-slip). Then, it follows from (88) that[φφφT
j Fv

i ni ]
ns = 0 necessarily for allj, meaning[VTFv

i ni ]
ns = 0.

Putting (84), (86) and (87) together, we obtain:

1
cv

∫

Ω(ρη),tdΩ =
∫

Ω cvVT
,i K̃ i j V, jdΩ + 1

cv

∫

Ω

[

−(Hui),i −
(qi

θ
)

,i

]

dΩ

=
∫

Ω cvVT
,i K̃ i j V, jdΩ + 1

cv

∫

∂ΩW




−H uini

︸︷︷︸

=0 (by no-slip BC)

−
(qi

θ
)

ni




dS

=
∫

Ω cvVT
,i K̃ i j V, jdΩ− 1

cv

∫

∂ΩW

(qini

θ

)

︸ ︷︷ ︸

=0 (by adiabatic wall BC)

dS

≥ 0

(89)

or
d
dt

∫

Ω
ρηdΩ ≥ 0 (90)

which implies non-decreasing entropy (63), and therefore entropy-stability of the Galerkin projection.

3.4 Weak Formulation and Implementation of Boundary Conditions (61)and (62)

Let us now formulate a weak implementation of the boundary conditions (61), using the viscous fluxes to implement
the no-slip condition. We also formulate the implementation of the no-penetration boundary condition (62) using the
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convection term, which may be required for the numerics if the basis functionsφφφ m donot satisfy the no-slip condition
on ∂ΩW. Projecting (56) onto the modeφφφm, gives:

∫

Ω φφφ T
mA0V,tdΩ = −

∫

Ω φφφT
mÃ iV,idΩ +

∫

Ω φφφT
m([K̃ v

i j + K̃h
i j ]V, j),idΩ

=
∫

Ω(φφφT
mÃ i),iVdΩ−

∫

Ω φφφ T
m,iK̃ i j V, jdΩ

−

∫

∂ΩW

φφφ T
m[Ã iniV]npdS

︸ ︷︷ ︸

=Inp
m

+

∫

∂ΩW

φφφ T
m[K̃ v

i j niV, j ]
nsdS

︸ ︷︷ ︸

=Ins
m

+

∫

∂ΩW

φφφ T
m[K̃h

i j niV, j ]
addS

︸ ︷︷ ︸

=Iad
m

(91)

From Sections 5.2–5.4 of the Appendix, we have that:

[Ã iniV]np =









0
−ρ ısn1

−ρ ısn2

−ρ ısn3

0









(92)

[K̃ v
i j niV, j ]

ns =
µ

V2
5









0
(−V5Vi+1,1+Vi+1V5,1−V5V2,i +V2V5,i)ni

(−V5Vi+1,2+Vi+1V5,2−V5V3,i +V3V5,i)ni

(−V5Vi+1,3+Vi+1V5,3−V5V4,i +V4V5,i)ni

0









+ λ
[
−V5Vi+1,i +Vi+1V5,i

V2
5

]









0
n1

n2

n3

0









(93)

and
[K̃h

i j niV, j ]
ad = 0 (94)

Denoting
[φm]n ≡ φ2

mn1 + φ3
mn2 + φ4

mn3 (95)

we obtain the following expressions for the boundary integrals in (91) (Table 5).

Table 5: Boundary integrals arising from the weak implementation of the BCs (61)
Boundary Integral Expression

Inp
m

∫

∂ΩW

[
γ−1

(−V5)
2

]1/(γ−1)
exp

(
−γ+V1−

1
2V5

(V2
2 +V2

3 +V2
4 )

γ−1

)

[γ −V1+ 1
2V5

(V2
2 +V2

3 +V2
4 )][φm]ndS

Ins
m

∫

∂ΩW

[

− µ
V2

5
(V5Vi+1, j −Vi+1V5, j +V5Vj+1,i −Vj+1V5,i)niφm+1−λ

(
V5Vi+1,i−Vi+1V5,i

V2
5

)

[φm]n

]

dS

Iad
m 0

Note that if the POD modesφφφm satisfy the no-slip condition on∂ΩW, i.e.,φ2
m = φ3

m = φ4
m = 0, then the integralsInp

m

andIns
m in Table 5 are identically 0:Inp

m = Ins
m ≡ 0.

The non-linearity in the full Navier-Stokes equations (52)is in the advection term, or Euler fluxesA i . Note, however,
that the diffusive terms in the entropy variable analog of (52), namely (65), are also non-linear, due to the fact that
the symmetrizing matrix (Jacobian)A0 ≡ U,V is a function ofV. Hence,all the symmetrized matrices, namelyÃ i

andK̃ i j will be non-linear inV; in the ROM with boundary conditions, the boundary integrals (Table 5) will contain
non-linearities as well if the basis functions do not satisfy no-slip. Moreover, sinceA0 ≡ A0(V), while one has that
(φφφ j ,φφφ i) = δi j for any two basis functionsφφφ j ,φφφ i ,

(φφφ i ,A0φφφ j) 6= δi j (96)

A consequence of (96) is a mass matrix will appear in the semi-discrete ROM to be advanced forward in time (see
e.g., (130)).

Introducing the shorthand, forV1,V2 ∈ R
5:

(V1,V2) ≡

∫

Ω
VT

1 V2dΩ, 〈V1,V2〉∂ΩW
≡

∫

∂ΩW

VT
1 V2dS (97)
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the governing equations (65) projected onto a POD modeφφφm are

(φφφ m,A0V,t)−
(
(φφφmÃ i),i ,V

)
+(φφφm,i , K̃ i j V, j)−〈φφφm, [Ã iniV]np〉∂ΩW

︸ ︷︷ ︸

=Inp
m

+〈φφφm, [K̃ v
i j niV, j ]

ns〉∂ΩW
︸ ︷︷ ︸

=Ins
m

+〈φφφm, [K̃h
i j niV, j ]

ad〉∂ΩW
︸ ︷︷ ︸

=Iad
m =0

= 0
(98)

or (settingIad = 0; see Table 5)

(φφφm,A0V,t)−
(
φφφ m,i , Ã iV

)
−
(
φφφ m, Ã i,iV

)
+(φφφm,i , K̃ i j V, j)−〈φφφm, [Ã iniV]np〉∂ΩW

︸ ︷︷ ︸

=Inp
m

+〈φφφm, [K̃ v
i j niV, j ]

ns〉∂ΩW
︸ ︷︷ ︸

=Ins
m

= 0 (99)

Substituting the modal expansion (82) into (99), one obtains

∑M
n=1(φφφ m, [A0]Mφφφn) ȧn =

(
φφφm,i , [Ã i ]MVM

)
+
(
φφφ m, [Ã i,i ]NVM

)
− (φφφm,i , [K̃ i j ]MVM, j )+ 〈φφφm, [Ã iniV]np

M 〉∂ΩW

−〈φφφm, [K̃ v
i j niV, j ]

ns
M〉∂ΩW

(100)

where[A0]M ≡ A0(VM) = A0
(

∑M
n=1an(t)φφφn

)
and similarly for the other matrices with “M” subscripts in (100).

All the terms in the projected equations (99) contain non-linearities8, including the term on the left-hand side. We will
denote the non-linear terms as follows:

[f0(VM)]n = [A0]Mφφφn, n = 1, ...,M (101)

f i(VM) ≡ [Ã i ]MVM, i = 1,2,3 (102)

f4(VM) ≡ [Ã i,i ]MVM (103)

f i(VM) ≡ [K̃ i j ]MVM, j , i = 5,6,7 (104)

f8(VM) ≡ [Ã iniV]np
M (105)

f9(VM) ≡ [K̃ v
i j niV, j ]

ns
M (106)

Then (100) takes the form (fori = 1,2,3)

∑M
n=1(φφφ m, [f0(VM)]n) ȧn =

(
φφφm,i , f i(VM)

)
+(φφφm, f4(VM))− (φφφm,i , f i+4(VM))+ 〈φφφm, f8(VM)〉∂ΩW

−〈φφφm, f9(VM)〉∂ΩW

(107)

for t ∈ (0,T] subject to the initial conditionV(0,x) = V0(x). Once discretized in time, (107) will yield a non-linear
discrete system of equations that can be advanced in time using an explicit time integration scheme, or by combining an
implicit scheme with Newton’s method at each time step. Notethat, unlike in the case of a ROM for linear equations,
the left-hand side of (107) will contain a mass matrix that will need to be inverted during the time-integration of the
ROM.

3.5 “Best Points” Interpolation for Non-Linear Projected Terms

As in the 1D tubular reactor problem of Section 2.3, applyingthe standard Galerkin reduced-order model to (107) is
inefficient due to the presence of the non-linear terms. To recover efficiency, let us develop the coefficient function
approximation (Section 2.3) to the non-linear terms in thisexpression.

As outlined in Algorithm 1, one begins by computing snapshotsK for the primal unknown fieldV, atK different times
tk:

S
V ≡ {ξξξ V

k (x) = Vk
h(x) : 1≤ k≤ K} (108)

8As discussed in Section 3.4, if the POD modesφφφm satisfy the no-slip condition at∂ΩW the boundary integralsIns
m andInp

m vanish.
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Given this set of snapshots of the flow field, one then computessnapshots for each of the non-linear functions in (101)
– (106):

S
[f0]n ≡ {ξξξ [f0]n

k (x) = [f0(Vk
h(x))]n : 1≤ k≤ K}, n = 1, ...,M (109)

S
f j ≡ {ξξξ f j

k (x) = f j(Vk
h(x)) : 1≤ k≤ K}, j = 1, ...,9 (110)

From these snapshots, one solves for the “best” interpolation points for each of the non-linear functions (101)–(106),
denoted here by:

{z[f0]n
m }M

m=1 : “best” (or any) interpolation points for[f0]n,n = 1, ...,M (111)

{z
f j
m}M

m=1 : “best” (or any) interpolation points forf j , j = 1, ...,9 (112)

following the approach outlined above in Section 2.3 and in the journal article [16].

We note that the main difference between the non-linear functions that appear in the projected Navier-Stokes equations
(107) and the projected equations for the tubular reactor (11) is that the non-linear functions in the former are vector-
valued. However, in practice, this poses no difficulty for the solution procedure of Section 2.3, as this exact procedure
can be applied to eachcomponentof each of the non-linear vector-valued function in (101)–(106). For concreteness, let
f j ∈ R

5 be any of the vector-valued functions in (101)–(106), and let f i
j denote theith component off j for j = 0,1...,9,

i = 1, ...,5. Then, each of the components of each of the functionsf j can be expanded in an orthonormal (scalar) basis

as, denoted here by{φ
f i
j

m }M
m=1. Now, we can define the best approximations of the elements inthe snapshot set as:

[ f i
j ]
∗
M(Vk

h) =
M

∑
m=1

α
f i
j

m φ
f i
j

m (x), 1≤ k≤ K (113)

where

α
f i
j

m = (φm, f i
j (V

k
h(·))), m= 1, ...,M,1≤ k≤ K (114)

for i = 1, ...,5, j = 0,1, ...,9. Now, the interpolation points for each component of each nonlinear function{z
f i
j

m}M
m=1 ∈

Ω ⊂ R
3 are defined as the solution to the following optimization problem:

minz1,...,zM∈Ω

∣
∣
∣
∣

∣
∣
∣
∣
[ f i

j ]
∗
M(·)−∑M

m=1 β
f i
j

m (z1, ...,zM)φ
f i
j

m

∣
∣
∣
∣

∣
∣
∣
∣

2

∑M
n=1φ

f i
j

n (zm)β
f i
j

n (z1, ...,zM) = f i
j (zm), 1≤ m≤ M

(115)

Substituting (113) into (115) and invoking the orthonormality of the{φ
f i
j

m }M
m=1, we obtain:

minz1,...,zM∈Ω ∑M
m=1(α

f i
j

m −β
f i
j

m (z1, ...,zM))2

∑M
n=1φ

f i
j

n (zm)β
f i
j

n (z1, ...,zM) = f i
j (zm), 1≤ m≤ M

(116)

i.e., the set of points{z
f i
j

m}M
m=1 is determined to minimize the average error between the interpolants[ f i

j ]M(·) and
the best approximations[ f i

j ]
∗
M(·). Comparing the optimization problems (116) and (25), one can see that these are

identical, with the general functionf in (25) replaced byf i
j , the ith component off j , one of the non-linear functions

in (101)–(106), and so we refer the reader to Section 2.3 for details of the solution procedure for the “best” (or,
hierarchical, if desired) interpolation points.

Given a set of interpolation pointsz
f i
j

m for f i
j , one can define the cardinal function{ψ

f i
j

m } for f i
j by

φφφ
f i
j

M(x) = A f i
j ψψψ

f i
j

M(x) (117)
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whereφφφ
f i
j

M(x) = (φ
f i
j

1 (x), ...,φ
f i
j

M (x))T andψψψ
f i
j

M(x) = (ψ
f i
j

1 (x), ...,ψ
f i
j

M (x))T , andA
f i
j

mn = φ
f i
j

n (z
f i
j

m). As before, the (scalar)

cardinal functionsψ
f i
j

m satisfyψ
f i
j

m (z
f i
j

n ) = δmn. Given the interpolation points{z
f i
j

m}M
m=1 and cardinal functions{ψ

f i
j

m }
(117), one can approximate theith component (i = 1, ...,5) of f j (101) – (106) by

[ f i
0(V)]n ≈ [[ f i

0]M(V)]n =
M

∑
m=1

[ f i
0]n(V(z

[ f i
0]n

m ))ψ [ f i
0]n

m ∈ R, n = 1, ...,M (118)

f i
j (V) ≈ [ f i

j ]M(V) =
M

∑
m=1

f i
j (V(z

f i
j

m))ψ
f i
j

m ∈ R, i = 1, ..,5, j = 1, ...,9 (119)

3.6 Reduced Order Approximation to the Symmetrized Compressible Navier-Stokes Equa-
tions with Interpolation

Our reduced-order approximation, (107) but now with interpolation, is obtained from (118) and (119) and takes the
following form

M

∑
n=1

(φφφ m, [f0(aM)]n)ȧn =
(
φφφ m,i , f i(aM)

)
+(φφφm, f4(aM))− (φφφm,i , f i+4(aM))−〈φφφm, f8(aM)〉∂ΩW

−〈φφφm, f9(aM)〉∂ΩW

(120)
for m= 1, ...,M, whereaT

M ≡ (a1, ...,aM) ∈ R
M and

[ f i
0]n ≈ [ f i

0(aM)]n =
M

∑
m=1

[ f i
0]n

(
m

∑
m=1

am(t)φφφm(z
[ f i

0]n
m )

)

ψ [ f i
0]n

m (x), n = 1, ...,M (121)

f i
j ≈ f i

j (aM) =
M

∑
m=1

f i
j

(
m

∑
m=1

am(t)φφφm(z
f i
j

m)

)

ψ
f i
j

m (x), j = 1, ...,9 (122)

It is convenient to write (120) in matrix/vector form, as would be required for numerical implementation. To do this,
note that, for theith, i = 1, ...,5 component off j(aM) and for l = 1, ...,M, we have that (implied summation on the
i = 1, ...,5, and lettingφ i

l denote theith component ofφφφ l ):

(φφφ l , f j(aM)) =
(

φ i
l , f i

j (aM)
)

=

(

φ i
l ,∑

M
m=1 f i

j

(

∑M
n=1anφφφn(z

f i
j

m)

)

ψ
f i
j

m

)

=
∫

Ω φ i
l

[

∑M
m=1

{

f i
j

(

∑M
n=1anφφφn(z

f i
j

m)

)}

ψ
f i
j

m

]

dΩ

= ∑M
m=1

[∫

Ω
(φ1

l ψ
f 1
j

m ,φ2
l ψ

f 2
j

m ,φ3
l ψ

f 3
j

m ,φ4
l ψ

f 4
j

m ,φ5
l ψ

f 5
j

m )dΩ
]

︸ ︷︷ ︸

∈R1×5

f j

(
M

∑
n=1

anφφφ n(z
f j
m)

)

︸ ︷︷ ︸

∈R5×1

(123)

where, to further clarify the notation:

f j

(
N

∑
n=1

anφφφn(z
f j
m)

)

≡



















f 1
j

(

∑m
n=1anφφφn(z

f 1
j

m )

)

f 2
j

(

∑M
n=1anφφφn(z

f 2
j

m )

)

f 3
j

(

∑M
n=1anφφφn(z

f 3
j

m )

)

f 4
j

(

∑M
n=1anφφφn(z

f 4
j

m )

)

f 5
j

(

∑m
n=1anφφφn(z

f 5
j

m )

)



















∈ R
5 (124)
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(123) is a matrix/vector product of the formGf j f j(Df j aM) where

G
f j

l ,[5(m−1)+1:5m]
=
∫

Ω
(φ1

l ψ
f 1
j

m ,φ2
l ψ

f 2
j

m ,φ3
l ψ

f 3
j

m ,φ4
l ψ

f 4
j

m ,φ5
l ψ

f 5
j

m )dΩ ∈ R
1×5 (125)

for 1≤ l ,m≤ M (so thatGf j ∈ R
M×5M), and

Df j ≡







φφφ1(z
f j
1 ) . . . φφφN(z

f j
1 )

...
. . .

...

φφφ 1(z
f j
M) . . . φφφN(z

f j
M)







∈ R
5M×N (126)

By φφφ m(z
f j
n ) we mean

φφφ m(z
f j
n ) ≡













φ1
m(z

f 1
j

n )

φ2
m(z

f 2
j

n )

φ3
m(z

f 3
j

n )

φ4
m(z

f 4
j

n )

φ5
m(z

f 5
j

n )













∈ R
5, 1≤ m,n≤ M (127)

f j(Df j aM) ∈ R
5M is defined analogously to (38).

Similarly, turning one’s attention to the left-hand side of(120) (with implied summation oni = 1, ...,5 as in (123)):

∑M
k=1(φφφ l , [f0(aM)]k)ȧk = ∑M

k=1

(
φ i

l , [ f
i
0(aM)]k

)
ȧk

= ∑M
k=1

(

φ i
l ,∑

M
m=1

[

f i
0

(

∑M
n=1 anφφφ n(z

[ f i
0]k

m )
)]

k
ψ [ f i

0]k
m

)

ȧk

= ∑M
k=1 ȧk

∫

Ω φ i
l

{

∑M
m=1

[

f i
0

(

∑M
n=1anφφφ n(z

[ f i
0]k

m )
)]

k
ψ [ f i

0]k
m

}

dΩ

= ∑M
k=1







∑M
m=1

[∫

Ω
(φ1

l ψ [ f 1
0 ]k

m ,φ2
l ψ [ f 2

0 ]k
m ,φ3

l ψ [ f 3
0 ]k

m ,φ4
l ψ [ f 4

0 ]k
m ,φ5

l ψ [ f 5
0 ]k

m )dΩ
]

︸ ︷︷ ︸

∈R1×5

[

f0

(
M

∑
n=1

anφφφn(z
[f0]k
m )

)]

k
︸ ︷︷ ︸

∈R5×1







ȧk

(128)
The entries of the mass matrix can be “read off” from (128), namely

M [1:M],k = G[f0]k[f0]k

(

D[f0]kaM

)

∈ R
M (129)

for 1≤ k≤ M, whereG[f0]k andD[f0]k are defined analogously to (125) and (126) respectively.

With this notation in place, (120) can be written in matrix/vector form as

MȧM = Gfi f i(Dfi aM)+G4f4(Df4aM)−Gfi+4f i+4(Dfi+4aM)−Gf8f8(Df8aM)−Gf9f9(Df9aM) (130)

(implied summation oni = 1,2,3). (130) can be integrated in time using a standard explicittime-integration scheme, or
an implicit time-integration scheme, with the applicationof Newton’s method at each time step. We emphasize again
that the upshot of formulating the ROMwith interpolation is all the inner-products are contained in the Gf j matrices
(125), which can be pre-computed prior to time integration of and/or application of Newton’s method to the ROM
ODE system (130). Similarly, the interpolated mass matrix (129) can also be pre-computed. The time-integration of
the ROM ODE system (130) will require inversion of this matrix, but since the number of modesM will in general be
quite small, the relative cost of this inversion is miniscule.

4 Conclusions and Future Work

The present work has focused on techniques for building entropy-stable and reduced order models (ROMs) governed
by non-linear partial differential equations (PDEs) in fluid mechanics. It turns out that one can bypass the need to
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recompute inner products involving the non-linear terms ateach time or Newton step, thereby reducing the on-line
computational complexity of the ROM, by handling the nonlinearities using a “best” points interpolation algorithm
[15, 16].

The said “best” points interpolation approach was tested ona model one-dimensional (1D) convection-diffusion-
reaction system of equations representing the flow through anon-adiabatic tubular reactor [7]. Numerical tests on
this simple non-linear problem revealed that the interpolation procedure successfully captures the non-linear behavior
(e.g., limit cycles) of the solution when a spectral basis isemployed. It also revealed some shortcomings of the Proper
Orthogonal Decomposition (POD) basis that one may wish to examine further in future work.

Following this preliminary testing of the interpolation, attention was turned to the key equations in fluid dynamics,
namely the compressible three-dimensional (3D) Navier-Stokes equations. The nonlinearity present in these equations
presents a challenge for developing provably stable ROMs. This challenge was addressed with the help of a transfor-
mation that effectively symmetrizes these equations, leading to a projection technique that leads to a model that obeys
the second law of thermodynamics: non-decreasing entropy of the solution. Following a proof of the entropy-stability
of the ROM solution with appropriate boundary condition, anefficient “best” points interpolation procedure was for-
mulated to handle the non-linear terms in the symmetrized equations. Given this formulation, it should be straight
forward to implement the Navier-Stokes ROM with the proposed interpolation, and to test the performance of this
solution under different choices of bases. Future work willinvolve implementation and testing of the Navier-Stokes
reduced order model formulated herein.

5 Appendix

5.1 Euler Fluxes in the Entropy Variables and Symmetrized Matrices

To simplify the notation, let us introduce the following variables9:

γ̄ = γ −1, k1 = 1
2V5

(V2
2 +V2

3 +V2
4 ), k2 = k1− γ,

k3 = k2
1−2γk1+ γ, k4 = k2− γ̄, k5 = k2

2− γ̄(k1 +k2),
c1 = γ̄V5−V2

2 , d1 = −V2V3, e1 = V2V5,
c2 = γ̄V5−V2

3 , d2 = −V2V4, e2 = V3V5,
c3 = γ̄V5−V2

4 , d3 = −V3V4, e3 = V4V5.

(131)

In the entropy variablesV, the Euler fluxesFi(V) are given by:

F1(V) =
ρ ı
V5









e1

c1

d1

d2

k2V2









, F2(V) =
ρ ı
V5









e2

d1

c2

d3

k2V3









, F3(V) =
ρ ı
V5









e3

d2

d3

c3

k2V4









(132)

The symmetrizing matrixA0 and its inverse are given by

A0 = U,V =
ρ ı

γ̄V5









−V2
5 e1 e2 e3 V5(1−k1)

c1 d1 d2 V2k2

c2 d3 V3k2

c3 V4k2

symm. −k3









(133)

9This section is repeated here from the Appendix of [9] to makethis document self-contained.
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and

A−1
0 = V,U = −

1
ρ ıV5









k2
1 + γ k1V2 k1V3 k1V4 (k1 +1)V5

V2
2 −V5 −d1 −d2 e1

V2
3 −V5 −d3 e2

V2
4 −V5 e3

symm. V2
5









(134)

The Jacobians of the Euler fluxes are:

Ã1 = F1,V =
ρ ı

γ̄V2
5









e1V5 c1V5 d1V5 d2V5 k2e1

−(c1 +2γ̄V5)V2 −c1V3 −c1V4 c1k2 + γ̄V2
2

−c2V2 −d1V4 k4d1

−c3V2 k4d2

symm. k5V2









(135)

Ã2 = F2,V =
ρ ı

γ̄V2
5









e2V5 d1V5 c2V5 d3V5 k2e2

−c1V3 −c2V2 −d1V4 k4d1

−(c2 +2γ̄V5)V3 −c2V4 c2k2 + γ̄V2
3

−c3V3 k4d3

symm. k5V3









(136)

Ã3 = F3,V =
ρ ı

γ̄V2
5









e3V5 d2V57d3V5 c3V5 k2e3

−c1V4 −d2V3 −c3V2 k4d2

−c2V4 −c3V3 k4d3

−(c3 +2γ̄V5)V4 c3k2 + γ̄V2
4

symm. k5V4









(137)

The velocity and temperature can be written in the entropy variables as:

ui(V) = −
Vi+1

V5
, i = 1,2,3 (138)

θ (V) = −
1

cvV5
(139)

The gradients of the viscous and heat fluxes are given by:

ui, j =
−V5Vi+1, j +Vi+1V5, j

V2
5

(140)

κθ,i =
γµ
Pr

1

V2
5

V5,i (141)

wherePr ≡ µcp/κ is the Prandtl number.

Finally, the symmetrized viscous and heat flux matricesK̃ i j ≡ K̃ v
i j + K̃h

i j are given by:

K̃11 =
1

V3
5










0 0 0 0 0
0 −(γ −2µ)V2

5 0 0 (λ +2µ)e1

0 0 −µV2
5 0 µe2

0 0 0 −µV2
5 µe3

0 (λ +2µ)e1 µe2 µe3 −
[

(λ +2µ)V2
2 + µ(V2

3 +V2
4 )− γµV5

Pr

]










(142)

K̃12 =
1

V3
5









0 0 0 0 0
0 0 −λV2

5 0 λe2

0 −µV2
5 0 0 µe1

0 0 0 0 0
0 µe2 λe1 0 (λ + µ)d1









(143)
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K̃13 =
1

V3
5









0 0 0 0 0
0 0 0 −λV2

5 λe3

0 0 0 0 0
0 −µV2

5 0 0 µe1

0 µe3 0 λe1 (λ + µ)d2









(144)

K̃22 =
1

V3
5










0 0 0 0 0
0 −µV2

5 0 0 µe1

0 0 −(λ +2µ)V2
5 0 (λ +2µ)e2

0 0 0 −µV2
5 µe3

0 µe1 (λ +2µ)e2 µe3 −
[

(λ +2µ)V2
3 + µ(V2

2 +V2
4 )− γµV5

Pr

]










(145)

K̃23 =
1

V3
5









0 0 0 0 0
0 0 0 0 0
0 0 0 −λV2

5 λe3

0 0 −µV2
5 0 µe2

0 0 µe3 λe2 (λ + µ)d3









(146)

K̃33 =
1

V3
5










0 0 0 0 0
0 −µV2

5 0 0 µe1

0 0 −µV2
5 0 µe2

0 0 0− (λ +2µ)V2
5 (λ +2µ)e3

0 µe1 µe2 (λ +2µ)e3 −
[

(λ +2µ)V2
4 + µ(V2

2 +V2
3 )− γµV5

Pr

]










(147)

with
K̃21 = K̃T

12, K̃31 = K̃T
13, K̃32 = K̃T

23 (148)

5.2 The Matrix Ã ini and Application of No-Penetration Boundary Condition

Given the symmetrized Euler flux matrices (135)–(137), and lettingnT = (n1,n2,n3) denote an outward normal vector
to some boundary∂ΩW in the domain, one has that:

Ã ini =










ρ
γ−1(u ·n) ρın1 + ρ

γ−1(u ·n)u1 ρın2 + ρ
γ−1(u ·n)u2

ρı(u ·n)+2ρıu1n1 + ρ
γ−1u2

1(u ·n) ρı(u2n1 +u1n2)+ ρ
γ−1u1u2(u ·n)

ρı(u ·n)+2ρıu2n2 + ρ
γ−1u2

2(u ·n)

symm.

ρın3 + ρ
γ−1(u ·n)u3

ρ
γ−1(u ·n)

[ 1
2u2 + γ ı

]

ρı [u3n1 +u1n3]+
ρ

γ−1u1u3(u ·n) ρı
( 1

2u2 + γ ı
)

n1 + ρ
γ−1

[( 1
2u2 + ıγ

)
+ ı(γ −1)

]
u1(u ·n)

ρ
γ−1u2u3(u ·n)+ρı(u3n2 +u2n3) ρı

( 1
2u2 + ıγ

)
n2 + ρ

γ−1

[( 1
2u2 + ıγ

)
+ ı(γ −1)

]
u2(u ·n)

ρı(u ·n)+2ρıu3n3 + ρ
γ−1u2

3(u ·n)
( 1

2u2 + iγ
)

ρın3 + ρ
γ−1

([ 1
2u2 + ıγ

]
+ ı [γ −1]

)
u3(u ·n)

ρ
γ−1

[ 1
4u4 + ı(u2 + γ ı)(2γ −1)

]
(u ·n)











(149)

It is straight forward to apply the no-penetration boundarycondition,u ·n = 0 on∂ΩW to (149):

[Ã ini ]
np =









0 ρ ın1 ρ ın2 ρ ın3 0
2ρ ıu1n1 ρ ı(u2n1+u1n2) ρ ı [u3n1 +u1n3] ρ ı

(
1
2u2 + γı

)
n1

2ρ ıu2n2 ρ ı(u3n2 +u2n3) ρ ı
(

1
2u2 + ıγ

)
n2

2ρ ıu3n3
(1

2u2 + ıγ
)

ρ ın3

0









(150)
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so that

[Ã iniV]np =









0
−ρ ısn1

−ρ ısn2

−ρ ısn3

0









(151)

and
VT [A iniV]np = −ρs(u ·n)

= Huini

= σini

(152)

Note that by the divergence theorem,
∫

Ω
(Hui), idΩ =

∫

Ω
σi,idΩ =

∫

∂ΩW

σinidS (153)

5.3 The MatricesK̃ v
i j ni and Application of No-Slip Boundary Condition

From (142)–(148), lettingnT = (n1,n2,n3) denote the outward unit normal vector to some relevant boundary∂ΩW:

K̃ v
11V,1 =









0
(λ +2µ)u1,1

µu2,1

µu3,1

−(λ +2µ)V2
V5

u1,1− µ V3
V5

u2,1− µ V4
V5

u3,1









(154)

K̃ v
12V,2 =









0
λu2,2

µu1,2

0
−µ V3

V5
u1,2−λ V2

V5
u2,2









(155)

K̃ v
13V,3 =









0
λu3,3

0
µu1,3

−µ V4
V5

u1,3−λ V2
V5

u3,3









(156)

So that

K̃1 jV, j =









0
(λ +2µ)u1,1+ λu2,2+ λu3,3

µu2,1 + µu1,2

µu3,1 + µu1,3

−(λ +2µ)V2
V5

u1,1− µ V3
V5

u2,1− µ V4
V5

u3,1− µ V3
V5

u1,2−λ V2
V5

u2,2− µ V4
V5

u1,3−λ V2
V5

u3,3









(157)

meaning

VT K̃1 jV, j = (λ +2µ)u1,1V2 + λu2,2V2 + λu3,3V2 + µu2,1V3+ µu1,2V3 + µu3,1V4 + µu1,3V4

−(λ +2µ)V2u1,1− µV3u2,1− µV4u3,1− µV3u1,2−λV2u2,2− µV4u1,3−λV2u3,3

= 0
(158)

(as asserted by Hughes in [9]). Moreover, applying the no-slip conditionu = 0 on ∂ΩW, one has that

[K̃1 jV, j ]
ns =









0
2µu1,1+ λ (u1,1+u2,2+u3,3)

µ(u2,1+u1,2)
µ(u3,1+u1,3)

0









(159)
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Next:

K̃ v
21V,1 =

1

V3
5









0
µV5[−V5V3,1 + µV3V5,1]
λV5[−V5V2,1 +V2V5,1]

0
−λV3[−V5V2,1+V2V5,1]+ µV2[V5V3,1−V3V5,1]









(160)

K̃ v
22V,2 =









0
µu1,2

(λ +2µ)u2,2

µu3,2

−µ V2
V5

u1,2− µ V4
V5

u3,2− (λ +2µ)V3
V5

u2,2









(161)

K̃ v
23V,3 =









0
0

λu3,3

µu2,3

−µ V4
V5

u2,3−λ V3
V5

u3,3









(162)

It follows that

K2 jV, j =









0
µu2,1 + µu1,2

λu1,1 +(λ +2µ)u2,2+ λu3,3

µu3,2 + µu2,3

−λ V3
V5

u1,1− µ V2
V5

u2,1− µ V4
V5

u2,3−λ V3
V5

u3,3− µ V2
V5

u1,2− µ V4
V5

u3,2− (λ +2µ)V3
V5

u2,2









(163)

so that

VTK2 jV, j = µu2,1V2 + µu1,2V2 + λu1,1V3+(λ +2µ)u2,2V3+ λu3,3V3 + µu3,2V4 + µu2,3V4

−λV3u1,1− µV2u2,1− µV4u2,3−λV3u3,3− µV2u1,2− µV4u3,2− (λ +2µ)V3u2,2

= 0
(164)

(also as Hughes asserts [9]). Then, applying the no-slip condition,u = 0 on∂ΩW:

[K2 jV, j ]
ns =









0
µ(u2,1+u1,2)

λ (u1,1 +u2,2+u3,3)+2µu2,2

µ(u3,2+u2,3)
0









(165)

Finally:

K̃ v
31V,1 =

1

V3
5









0
µu3,1

0
λu1,1

−λ V4
V5

u1,1− µ V2
V5

u3,1









(166)

K̃ v
32V,2 =









0
0

µu3,2

λu2,2

−λ V4
V5

u2,2− µ V3
V5

u3,2









(167)

K̃ v
33V,3 =









0
µu1,3

µu2,3

(λ +2µ)u3,3

−µ V2
V5

u1,3− µ V3
V5

u2,3− (λ +2µ)V4
V5

u3,3









(168)
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so that

K̃ v
3 jV, j =









0
µ(u3,1 +u1,3)
µ(u3,2 +u2,3)

λ (u1,1 +u2,2+u3,3)+2µu3,3

−λ V4
V5

u1,1− µ V2
V5

u3,1−λ V4
V5

u2,2− µ V3
V5

u3,2− µ V2
V5

u1,3− µ V3
V5

u2,3− (λ +2µ)V4
V5

u3,3









(169)

which confirms that

VT K̃ v
3 jV, j = µu3,1V2 + µu1,3V2 + µu3,2V3+ µu2,3V3 + λu1,1V4 + λu2,2V4 +(λ +2µ)u3,3V4

−λV4u1,1− µV2u3,1−λV4u2,2− µV3u3,2− µV2u1,3− µV3u2,3− (λ +2µ)V4u3,3

= 0
(170)

As for the application of the no-slip condition(u = 0 on ∂ΩW):

[K̃ v
3 jV, j ]

ns =









0
µ(u3,1+u1,3)
µ(u3,2+u2,3)

λ (u1,1 +u2,2+u3,3)+2µu3,3

0









(171)

Putting everything together, we obtain the matrix stemmingfrom the application of the no-slip conditionu = 0 on
∂ΩW:

[K̃ i j niV, j ]
ns =

µ
V2

5









0
(−V5Vi+1,1+Vi+1V5,1−V5V2,i +V2V5,i)ni

(−V5Vi+1,2+Vi+1V5,2−V5V3,i +V3V5,i)ni

(−V5Vi+1,3+Vi+1V5,3−V5V4,i +V4V5,i)ni

0









+ λ
[
−V5Vi+1,i +Vi+1V5,i

V2
5

]









0
n1

n2

n3

0









(172)

An interesting observation is that components(2 : 4) of [K̃ i j niV, j ]
ns are

[K̃ i j niV, j ]
ns
2:4 = [2µS+ λ ∇ ·uI ]n (173)

whereS is the strain tensor, with components given by

Si j =
1
2
(ui, j +u j ,i) (174)

Recall that the general deformation law for a Newtonian viscous fluid is (see equation (11) in [9]):

τi j = 2µSi j + δi j λ ∇ ·u (175)

Moreover, the governing momentum equations have the form:

ρ
Du
Dt

= ∇ · τi j (176)

If we set Du
Dt = 0 at the wall (i.e., assume the fluid is at rest at the wall), then(176) implies that∇ · τi j = 0 at the wall,

or τi j ·n = 0 at the wall (by the divergence theorem). Then (175) impliesthat [2µS+ λ ∇ ·uI ]n = 0 at the wall.

5.4 The MatricesK̃h
i j ni and Application of the Adiabatic-Wall Boundary Condition

Let θ denote the absolute temperature. Then, from (45) in [9],

K̃h
i j niV, j = Fh

i ni =









0
0
0
0

κθ,ini









(177)
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Suppose the wall is adiabatic, i.e.,θ,ini = 0. Then

[K̃h
i j niV, j ]

ad = 0 (178)

5.5 Proof of Indefiniteness of Heat Flux Matrix K̃h
i j with Harten’s Family of Homogeneous

Generalized Entropy Flux Functions

Suppose we wish to use a homogeneous entropy flux function, from Harten’s family of homogeneous generalized
entropy flux functions [6]:

H(s) = Ke
s

α+γ (179)

whereα,K ∈ R.

Without loss of generality, consider the 1D case. Refer to [5]. In particular, we have:

U =





ρ
ρu
E



≡





U1

U2

U3



 (180)

where

p = (γ −1)

(

E−
1
2

ρu2
)

(181)

It is shown in [5] that with the generalized entropy flux function (179), the entropy variables in terms of the primitive
variables are:

V =
p∗

p





U3 + α−1
γ−1 p

−U2

U1



≡





V1

V2

V3



 (182)

where

p∗ =
γ −1

α

(

V1−
1
2

V2
2

V3

)

(183)

The inverse transformation is given by:

U =
p
p∗





V3

−V2

V1−
α−1
γ−1 p∗



 (184)

Assuming a calorically-perfect gas,

E = ρ
(

cvT −
1
2

u2
)

(185)

whereT is the temperature (denotedθ in [9]) . Let us work this out in terms of the variablesU andV:

E = ρcvT + ρu2

2

U3 = U1cvT +
U2

2
2U1

V1−
α−1
γ−1 p∗ = V3cvT + 1

2
V2

2
V3

V1−
α−1
γ−1

γ−1
α

(

V1−
1
2

V2
2

V3

)

= V3cvT + 1
2

V2
2

V3(

V1−
1
2

V2
2

V3

)

− α−1
α

(

V1−
1
2

V2
2

V3

)

= V3cvT

1
α

(

V1−
1
2

V2
2

V3

)

= V3cvT

(186)

Rearranging,

cvT =
1
α

(
V1

V3
−

1
2

V2
2

V2
3

)

(187)
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Now, the heat flux is given by:qi = −κT,i. Therefore, we must differentiateT with respect toxi :

cv
∂T
∂xi

= 1
α

(
V3V1,i−V1V3,i

V2
3

−
V2

3 V2V2,i−V2
2 V3V3,i

V4
3

)

= 1
α

(
1

V3
V1,i −

V2
V3

V2,i +
(

V3−V1
V2

3

)

V3,i

)

= 1
α

(
1

V3
−V2

V3

V3−V1
V2

3

)

V,i

(188)

so that, in the notation of [9], the heat flux matrix is:

K̃h
11 = −

κ
αcv






0 0 0
0 0 0
1

V3
−V2

V3

V3−V1
V2

3




 (189)

The matrix (189) is asymmetric, as Hughes asserts; but that in itself is not a problem, since the stability proof (Theorem
3.3.1) simply requires̃Kh

11 to be positive semi-definite. Note that, for anyx ∈ R
3:

xT K̃11x = xT








K̃h
11+(K̃h

11)
T

2
︸ ︷︷ ︸

≡(Kh
11)

symm








x (190)

Therefore,xTK̃11x ≥ 0 if the symmetric part of̃Kh
11 is positive semidefinite. From (189),

(

K̃h
11

)symm
= −

κ
αcv






0 0 1
2V3

0 0 − V2
2V3

1
2V3

− V2
2V3

V3−V1
V2

3




 (191)

The eigenvalues of this matrix are:

{λ1,λ2,λ3} =






0,

κ
αcv




V1−V3±

√

V2
1 −2V1V3 +2V2

3 +V2
3V2

2

2V2
3










(192)

The first eigenvalue is 0, so we are good to go with that one. Letus look atλ1. It is non-negative isV1−V3 ≥ 0.

V1−V3 = p∗

p

(

U3 + α−1
γ−1 p−U1

)

= p∗

p

(

E + α−1
γ−1 p−ρ

)

= p∗

p

(
1

γ−1 p+ 1
2ρu2+ α−1

γ−1 p−ρ
)

= p∗

p

(
1
2ρu2+ α

γ−1 p−ρ
)

(193)

Now, we desire−ρ + α
γ−1 p+ 1

2ρu2 ≥ 0. Let us see what requirements onα this constraint places:

−ρ + α
γ−1 p+ 1

2ρu2 ≥ 0
α

γ−1 p ≥ ρ
(
1− 1

2u2
)

≥−ρ 1
2u2

α ≥− ρ
p

1
2u2(γ −1)

(194)

The right-hand side of (194) is necessarily negative given the physics (p,ρ > 0, γ > 1); therefore ifα > 0, thenλ2 ≥ 0.
Harten has already placed this constraint onα so in fact it is nothing new. Thereforeλ2 ≥ 0 for α > 0.
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Let us examine the last eigenvalueλ3. For it to be non-negative, we must have:

V1−V3 ≥
√

V2
1 −2V1V3+2V2

3 +V2
3V2

2

V2
1 −2V1V3 +V2

3 ≥ V2
1 −2V1V3+2V2

3 +V2
3 V2

2
0 ≥ V2

3 +V2
3V2

2
0 ≥ V2

3 (1+V2
2 )

(195)

The only way for (195) to hold is ifV3 = 0. Let us see if this is possible:

V3 =
p∗

p
U1 =

p∗

p
ρ (196)

But requiring this to be zero would amount to requiringρ = 0, which is non-physical. Therefore the last eigenvalue
λ3 will necessarily be negative, unfortunately. The heat flux matrix K̃11 is not positive semi-definite with the choice
of Harten’s homogeneous generalized entropy flux function (179).
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